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On the basis of self-consistent Born approximation for Dirac fermions under charged impurity scatterings in
graphene, we study the thermoelectric power using the heat current-current correlation function. The advantage
of the present approach is its ability to effectively treat the low-doping case where the coherence process
involving carriers in both upper and lower bands becomes important. We show that the low-temperature
behavior of the thermoelectric power as a function of the carrier concentration and the temperature observed by
the experiments can be successfully explained by our calculation.
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I. INTRODUCTION

Recent experimental observations1–3 have revealed the
unusual behavior of the thermoelectric power S as a function
of the carrier concentration n in graphene at low temperature.
Near zero carrier concentration, the observed result of S ex-
plicitly departures from the formula �1 /�n given by the
semiclassical Boltzmann theory4–6 with n as the number den-
sity of the charge carriers. Instead of diverging at n=0, S
varies dramatically but continuously with changing sign as n
varying from hole side to electron side. There exist phenom-
enological explanations on this problem.1,7 Though the
quantum-mechanical calculations based on the short-range
impurity scatterings8,9 can qualitatively explain the behavior
of the thermal-electric power, they cannot produce the linear-
carrier-density dependence of the electric conductivity. Since
the thermoelectric power is closely related to the electric
transport, a satisfactory microscopic model dealing with the
two problems in a self-consistent manner is needed. So far,
such a microscopic theory for the thermal and electric trans-
ports of Dirac fermions in graphene is still lacking.

It has well been established that the charged impurities in
graphene are responsible for the carrier density dependences
of the electric conductivity10–16 and the Hall coefficient17 as
measured in the experiments by Novoselov et al.18 In the
present work, based on the conserving approximation within
the self-consistent Born approximation �SCBA�, we develop
the theory for the thermoelectric power S of the Dirac fermi-
ons in graphene using the heat current-current correlation
function under the scatterings due to charged impurities. This
approach has been proven to be effective in treating the elec-
tric transport property of graphene at low carrier density,15,17

there the coherence between the upper and lower bands is
automatically taken into account. It is the coherence that
yields finite minimum conductivity at zero carrier density.
We will calculate the thermoelectric power as a function of
carrier concentration at low temperature and compare with
the experimental measurements.1–3

II. FORMALISM

We start with description of the electrons in graphene. At
low carrier concentration, the low-energy excitations of elec-

trons in graphene can be viewed as massless Dirac
fermions19–22 as being confirmed by recent experiments.18,23

Using the Pauli matrices �’s and �’s to coordinate the elec-
trons in the two sublattices �a and b� of the honeycomb lat-
tice and two valleys �1 and 2� in the first Brillouin zone,
respectively, and suppressing the spin indices for briefness,
the Hamiltonian of the system is given by

H = �
k

�k
†vk� · �� �z�k +

1

V
�
kq

�k−q
† Vi�q��k, �1�

where �k
†= �cka1

† ,ckb1
† ,ckb2

† ,cka2
† � is the fermion operator,

v ��5.86 eV Å� is the velocity of electrons, V is the volume
of system, and Vi�q� is the electron-impurity interaction.
Here, the momentum k is measured from the center of each
valley with a cutoff kc�� /3a �with a�2.4 Å the lattice
constant�, within which the electrons can be regarded as
Dirac particles. By neglecting the intervalley scatterings that
are unimportant here, Vi�q� reduces to ni�−q�v0�q��0�0 with
ni�−q� and v0�q� as, respectively, the Fourier components of
the impurity density and the electron-impurity potential. For
the charged impurity, v0�q� is given by the Thomas-Fermi
�TF� type

v0�q� =
2�e2

�q + qTF��
exp�− qRi� , �2�

where qTF=4kFe2 /v� is the TF wave number, kF=��n �with
n as the carrier density� is the Fermi wave number, ��3 is
the effective dielectric constant, and Ri is the distance of the
impurity from the graphene layer. This model has been suc-
cessfully used to study the electric conductivity15 and the
Hall coefficient.17 As in the previous calculation, we
here set Ri=0 and the average impurity density as
ni=1.15�10−3a−2.

Under the SCBA �see Fig. 1�a��,24,25 the
Green’s function G�k ,��= ��+	−vk� ·�� �z−
�k ,���−1

	g0�k ,��+gc�k ,��k̂ ·�� �z and the self-energy 
�k ,��
=
0�k ,��+
c�k ,��k̂ ·�� �z of the single particles are deter-
mined by coupled integral equations,15


0�k,�� =
ni

V
�
k�

v0
2�
k − k�
�g0�k�,�� , �3�
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c�k,�� =
ni

V
�
k�

v0
2�
k − k�
�gc�k�,��k̂ · k̂�, �4�

g0�k,�� =
1

2
�g+�k,�� + g−�k,��� , �5�

gc�k,�� =
1

2
�g+�k,�� − g−�k,��� , �6�

where g��k ,��= ��+	�vk−
0�k ,���
c�k ,���−1 with 	

the chemical potential, k̂ is the unit vector in k direction, and
the frequency � is understood as a complex quantity. Here
g+�k ,�� �or g−�k ,��� can be viewed as the upper �lower�
band Green’s function. The chemical potential 	 is deter-
mined by the doped carrier density n,

n =
2

V
�

k
�− �

−



 d�

�
F���Tr Im G�k,� + i0� − 2
 , �7�

where the front factor 2 comes from the spin degree, the first
term in the square brackets is the total occupation of elec-
trons, the last term corresponds to the nondoped case with 2
as the valley degeneracy, and F��� is the Fermi distribution
function. We hereafter will call 	 determined by Eq. �7� as
the renormalized chemical potential, distinguishing from the
approximation 	�EF=vkF used in some cases such as the
semiclassical Boltzmann theory at zero temperature.

We now consider the thermal transport. The �particle� cur-
rent J1 and heat current J2 operators are defined as

J1 = v�
k

�k
†�z�� �k,

J2 = iv�
k

�k
†�z��

�

�t
�k.

They correspond, respectively, to the forces X1=−T−1� �	
−e�� and X2=��1 /T� with T as the temperature and � the
external electric potential.26 The heat operator J2 defined

here is equivalent to devising the heat vertex as
velocity� frequency as shown by Johnson and Mahan27 for
the independent electrons interacting with the impurities. Ac-
cording to the linear-response theory, the thermoelectric
power is given by S=−L12 /eTL11 where the linear-response
coefficients L	� are obtained from the correlation function
�	���+� by

L	� = − T lim
�→0

Im �	��� + i0�/� .

In the Matsubara notation, �	��i�m� reads

�	��i�m� = −
1

V
�

0

�

d�ei�m��T�J	x���J�x�0��

with �=1 /T. The quantity L11=T� /e2 is related to the elec-
tric conductivity � which we have obtained in our previous
work.17

Within the SCBA to the single particles, the correlation
function �	� is determined with the ladder-type vertex cor-
rections. A common vertex v�x�k ,�1 ,�2� given as the dia-
grams in Fig. 1�b� can be factorized out. �x�k ,�1 ,�2� is
expanded as17

�x�k,�1,�2� = �
j=0

3

yj�k,�1,�2�Aj
x�k̂� ,

where A0
x�k̂�=�z�x, A1

x�k̂�=�x�� · k̂, A2
x�k̂�=�� · k̂�x,

A3
x�k̂�=�z�� · k̂�x�� · k̂, and yj�k ,�1 ,�2� are determined by four-

coupled integral equations.15 In the following, since the heat
current-current correlation function will be analyzed for the
case of �1=�− i0	�− and �2=�+ i0	�+, we here need to
write out the relevant equations for this case. For briefness,
we denote yj�k ,�− ,�+� simply as yj�k ,��. To write in a com-
pact form, we define the four-dimensional vector
Yt= �y0 ,y1 ,y2 ,y3� �where the superscript t implies transpose�
and the matrices,

U�k,k�� = niv0
2�
k − k�
��

1 0 0 0

0 cos � 0 0

0 0 cos � 0

0 0 0 cos 2�
� ,

where � is the angle between k and k�, and

M�k,�� =�
ḡ0g0 ḡ0gc ḡcg0 ḡcgc

ḡ0gc ḡ0g0 ḡcgc ḡcg0

ḡcg0 ḡcgc ḡ0g0 ḡ0gc

ḡcgc ḡcg0 ḡ0gc ḡ0g0

� ,

where ḡ0,c are complex conjugate of g0,c=g0,c�k ,�+�. The
equation determining Y�k ,�� is then given by

Y�k,�� = Y0 +
1

V
�
k�

U�k,k��M�k�,��Y�k�,�� �8�

with Y0
t = �1,0 ,0 ,0�.

We need to calculate the heat current-current correlation
function �12 and then the coefficient L12. The correlation
function �12 is diagrammatically given by Fig. 1�c�, which is

(a)

= +

k ω2

k ω1

x

(b)

(c)

FIG. 1. �Color online� �a� Self-consistent Born approximation
for the self-energy of the single Dirac fermion. �b� Current vertex
with impurity insertions. �c� Heat current-current correlation func-
tion. The red solid circle denotes the heat current vertex.
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a conserving approximation. From Fig. 1�c�, we have

�12��m� =
2v2T

V
�
kn

i�n Tr��z�xG�k,i�n��x�k,i�n,i�

+ i�m�G�k,i� + i�m�� , �9�

where the factor 2 is due to the spin degeneracy, i�n �the
fermionic Matsubara frequency� in front of the trace Tr op-
eration comes from the heat vertex. The difference between
�12��m� and �11��m� is, there is, the factor i�n in the above
expression. According to the standard procedure,26 by per-
forming the analytical continuation i�m→�+ i0 and taking
the limit �→0, one then gets a formula for L12 in terms of
the integral with respect to the real frequency,

L12 =
T

e2�
−





d��−
�F���

��

����� , �10�

where ����= �P��− ,�+�−Re P��+ ,�+�� /2�. Using the
Ward identity, one obtains Re P��+ ,�+�=−2e2 /��,15 which
contributes a constant term in ����. The function P��− ,�+�
is given by

P��−,�+� =
8v2e2

V
�
kj

M0j�k,��yj�k,�� �11�

with M0j�k ,�� as the elements of the matrix M�k ,�� defined
above. At low temperature, since the contribution to the in-
tegral in Eq. �10� comes from a small region around �=0,
one then expands ���� as �������0�+��� with

�� =
4v2e2

�V
�
kj
� �

��
M0j�k,��yj�k,0�

+ M0j�k,0�
�

��
yj�k,��


�=0
�12�

and obtains L12=T3�2�� /3e2. The expression for the thermo-
electric power then reads

S = −
�2

3

T��

e�
�13�

in formal the same as the Mott relation.4 Since the quantity
�� is involved with the functions �g0,c�k ,�� /�� 
�=0 and
�yj�k ,�� /�� 
�=0, to obtain S one needs to solve not only
Eqs. �3�–�8� for functions g0,c�k ,�� and yj�k ,�� but also the
equations for their frequency derivative at �=0. The equa-
tions for �g0,c�k ,�� /�� and �yj�k ,�� /�� are given by the
frequency derivative of Eqs. �3�–�6� and �8�.

III. NUMERICAL RESULT

In principle, the Green’s function can be solved from Eqs.
�3�–�7� by iterations. However, there is difficulty in obtaining
a convergent solution since in the intermediate iteration pro-
cesses the Green’s function is in usual not smooth and it is
hard to satisfy Eq. �7�. To overcome this difficulty, we per-
form the calculation of the Green’s function at the Matsubara
frequencies along the imaginary frequency axis for T�0 us-
ing the method developed in Ref. 28. For doing so, Eqs.

�3�–�7� should be expressed for the Matsubara frequency. For
example, Eq. �7� is rewritten as

n =
2

V
�

k
�T�

�

Tr G�k,i���ei��� − 2

=

2

V
�

k
�T�

�

Tr�G�k,i��� − G0�k,i����

− 2�1 − F�vk − 	� − F�− vk − 	��� , �14�

where �� is the fermionic Matsubara frequency, � is an in-
finitesimal small positive quantity, and G0 is the zeroth
Green’s function. In the last equality, we have adopted the
usual trick to improve the convergence of the series summa-
tion. With a high-efficiency numerical algorithm,28 we need
to calculate the Green’s function only at some selected Mat-
subara frequencies �� distributed in L successively con-
nected blocks each of them containing M frequencies; the
summation in Eq. �14� is then taken over those selected
points with each term multiplied by a weighting factor. In the
present calculation, the parameters for sampling the Matsub-
ara frequencies are �h ,L ,M�= �2,20,5�, where h is the inte-
ger parameter that the stride of � in the jth block is h�j−1�.
The number of the total frequencies is L�M −1�+1=81. The
iteration is stable and converges fast. For zero temperature, 	
can be determined by interpolation from the results at T�0.
As an example, we show in Fig. 2 the result for the chemical
potential 	 at the doped electron concentration �=8�10−5

�here � is defined as the doped carriers per carbon atom
�=�3a2n /4�. Usually, 	 is a smooth function of the tempera-
ture T. With the chemical potential 	 so obtained, the
Green’s function at real frequencies can be obtained by solv-
ing Eqs. �3�–�6�.

We have numerically solved the integral equations for de-
termining the functions g0,c�k ,��, yj�k ,��, �g0,c�k ,�� /��,
and �yj�k ,�� /�� at �=0 for various carrier concentrations.
In Figs. 3–6, we show the self-energy 
��k , i0�
=
0�k , i0��
c�k , i0� �Fig. 3�, the function yj�k ,0� �Fig. 5�
and their frequency derivative �
��k ,�+ i0� /�� 
�=0
	
�� �k , i0� �Fig. 4� and �yj�k ,�+ i0� /�� 
�=0	yj��k , i0�

Ta/v

0.000 0.002 0.004 0.006

µa
/v

0.008

0.010

0.012

δ = 8x10-5

FIG. 2. �Color online� Chemical potential 	 as a function of
temperature T at �=8�10−5.
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�Fig. 6� for �=8�10−5 and T=0. Notice that 
��k ,�� cor-
respond to the upper and lower band self-energies, respec-
tively. The real part of the self-energy means the shift of the
energy of the single particle while the imaginary part is re-
lated to the lifetime. As seen from Fig. 3, overall, the upper
band shifts downward but the lower band shifts upward. This
change stems from the mixing of the states of two bands
under the impurity scatterings. The functions yj reveal how
the current vertex is modified by the impurity scatterings.
For the bare current vertex only y0=1 is finite. From Fig. 5,
it is seen that the current vertex is significantly renormalized
from the bare one. The functions �
��k ,�+ i0� /�� 
�=0 �Fig.
4� and �yj�k ,�+ i0� /�� 
�=0 are structured around the Fermi
wave number kF. At larger k, they are smooth function of k.

With the above results, the quantity �� and the thermo-
electric power S can be calculated accordingly. Shown in
Fig. 7 are the obtained results for the quantity �� as a func-
tion of the carrier concentration �. The circles are the fully
self-consistent calculations with the chemical potential 	
renormalized. For comparison, the result �squares� by the
approximation 	�EF is also plotted. �� increases with �
monotonically and is odd with respect to � �electron� →−�
�hole�. A notable feature is that �� varies dramatically within
a narrow region −�0����0 with �0=7�10−5. Out of this

region, the magnitude of �� increases with a slower rate as

�
 increasing. The inset in Fig. 7 shows the electric conduc-
tivity at low carrier concentration. The purple circles and the
green squares are the interpolations. The values of the mini-
mum conductivity so determined are 2.7 �in unit of e2 /h� for
the renormalized 	 and 3.5 for 	�EF, both of them larger
than the well-known analytical result 4 /� obtained from the
single bubble using the phenomenological scattering rate in
the Green’s function.29,30 In a wide range of �, the overall
behaviors of both results obtained using the renormalized 	
and 	�EF for the electric conductivity as a function of � are
almost the same.17 The dot-dashed line represents the ex-
trapolation of � �for 	�EF� from large �. By carefully look-
ing at the behavior of �, we find that � starts to departure
from the linearity at approximately the same �0 below which
� decreases slower as � decreasing.

At low temperature, both � and �� are independent of T.
Therefore, S is a linear function of T at low T. Shown in Fig.
8 are the numerical results for S /T �red solid line with circles
for the renormalized 	 and the blue dashed line with squares
for 	�EF� as a function of � and the comparison with the
experimental measurements �symbols� by three groups.1–3

Within the same narrow region −�0����0, the calculated
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FIG. 3. �Color online� Self-energy 
��k , i0� in unit of v /a as a
function of k at �=8�10−5 and T=0.
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S /T varies drastically from the maximum at ��−�0 to the
minimum at ���0. Out of this region, the magnitude of S /T
decreases monotonically with �. Again, S /T is an odd func-
tion of �. Clearly, the present calculation can capture the
main feature of the experimental data. For the magnitude of
S /T, there are obvious differences between the experimental
results. This may be caused by the different conditions of the
samples treated by different experiments. We have investi-
gated the impurity density dependence of S by varying ni in
the range �0.8,1.2�n0 �with n0=1.15�10−3a−2�. The numeri-
cal results are almost indistinguishable from the one shown
in Fig. 8. The reason is that both � and �� have almost the
same dependence of the impurity density. As a result, the
ratio �� /� insensitively depends on ni.

The features of �� and S may be qualitatively explained
by analyzing the behavior of � as a function of �. Recall
�= P��− ,�+� /2� 
�=0+2e2 /�h.15 P is actually the functional
of the Green’s function G and the impurity potential v0, both
of latter two depending on � or the chemical potential 	. If
the � dependence of v0 is neglected, then one gets �� from
d� /d	. Based on such a consideration, it has been illustrated
in Ref. 1 that the calculated S from the experimental results
for � is in overall agreement with experiment. Theoretically,
at large carrier concentration, the system can be approxi-
mately described by the one band Green’s function, e.g., g+
for electron doping. This is equivalent to the Boltzmann
treatment to �. On the other hand, the Boltzmann theory
gives rise to a linear behavior of � down to very low � close
to 0. By the present formalism, however, there exists coher-
ence between the states of upper and lower bands31 at very
low doping because the single-particle energy levels are
broadened under the impurity scatterings. The coherence is
taken into account through the Green’s functions g� in the
present formalism. At �=�0, the coherence may be consid-
ered as setting in. As � further decreases, the Fermi level gets
close to the lower band and the coherence effect becomes
significant. As a result, there is the minimum electric con-

ductivity at �=0. As seen from the inset in Fig. 6, � de-
creases slower as ���0 being closer to zero, resulting in the
rapid decreasing of ��. The unusual behavior of S at low
doping comes from the combination of � and �� and can be
understood as the coherence effect between the upper and
lower Dirac bands.

The present model cannot be applied to doping close to
zero. At �=0, there is no screening to the charged impurities
by the model. This is unphysical. In a real system, there must
exist extra opposite charges screening the charged impurities.
This screening can be neglected only when above certain
doping level the screening length by the carriers is shorter
than that of the extra charges. Close to �=0, the extra screen-
ing could be taken into account in a more satisfactory model.
By the present model, we cannot perform numerical calcula-
tion at �=0 because of the Coulomb divergence of v0�q� at
q=0. The minimum electric conductivity is obtained by in-
terpolation.

The unusual behavior of the thermoelectric power of
graphene has also been studied recently by the semiclassical
approach.7 For explaining the experimental observed trans-
port properties of graphene at very low doping, Hwang et
al.14 have proposed the electron-hole-puddle model. By this
model, the local carrier density is finite and the total trans-
port coefficients are given by the averages of the semiclassi-
cal Boltzmann results in the puddles. The unusual behavior
of S and the minimum electric conductivity are so explained
by the electron-hole-puddle model.

At very low carrier doping, graphene is an inhomoge-
neous system as observed by experiment.32–35 There are re-
gions where the carrier concentrations are very low. The re-
sistance comes predominately from these regions. Our
calculation at very low carrier concentration corresponds to
studying the electron transport in these regions.
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IV. SUMMARY

In summary, on the basis of self-consistent Born approxi-
mation, we have studied the thermoelectric power of Dirac
fermions in graphene under the charged impurity scatterings.
The current correlation functions are obtained by conserving
approximation. The Green’s function and the current vertex
correction, and their frequency derivative are determined by
a number of coupled integral equations. The low-doping un-
usual behavior of the thermoelectric power at low tempera-
ture observed by the experiments is explained in terms of the
coherence between the upper and lower Dirac bands. The

present calculation for the thermoelectric power as well as
for the electric conductivity is in very good agreement with
the experimental measurements.
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